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Edge waves along periodic coastlines. Part 2 

By D. V. E V A N S  AND M. F E R N Y H O U G H  
School of Mathematics, University of Bristol, Bristol BS8 ITW, UK 

(Received 16 January 1995 and in revised form 15 March 1995) 

Numerical evidence of the existence of edge waves travelling along a periodic coastline 
consisting of a straight and vertical cliff face from which protrudes an infinite number 
of identical rectangular barriers, each extending throughout the water depth, is given 
based on a Galerkin approximation to an integral representation of the problem 
derived using the linear theory of water waves. 

1. Introduction 
In a recent paper, Evans & Linton (1993, refered to herein as Part 1) using classical 

linear water wave theory, proved the existence of edge waves travelling along a 
periodic coastline consisting of a straight and vertical cliff face from which protruded 
an infinite number of identical thin barriers, each extending throughout the water 
depth, provided the barriers were sufficiently long. Because the depth dependence 
could be separated out, the problem reduced to the solution of the two-dimensional 
Helmholtz equation, and was identical to an appropriate problem in linear acoustics, 
optics or electromagnetism involving a ‘comb-like’ diffraction grating. 

A general discussion of the electromagnetic theory of gratings is given by Petit (1980) 
and a more mathematical treatment by Wilcox (1984). In particular it is shown that 
there are two types of expressions which occur in a Fourier-series representation of 
the field, one describing plane waves which are either incident upon or scattered by 
the grating, the other describing Rayleigh-Bloch surface waves which are confined to 
the vicinity of the grating, and which decay exponentially in a direction normal to 
the grating. The question as to whether Rayleigh-Bloch surface waves can exist in 
isolation in the absence of incident or reflected plane waves is mentioned in Wilcox 
(1984, pp. 11-12) who states that no general criteria are known on the shape of the 
grating for these surface waves to exist. However if the Neumann condition on the 
grating is replaced by a Dirichlet condition it would appear that no surface waves 
can exist in isolation. 

In Part 1 a rigorous proof of the existence of Rayleigh-Bloch surface waves was 
given for the case of a ‘comb-like’ grating provided the ‘teeth’ of the comb were 
sufficiently long. The solution was in the form of the usual Fourier expansion 
appropriate to the periodicity of the grating modulated by a factor exp(ijly) where 
y is measured along the grating. The form of the solution provided an accurate 
and efficient method for obtaining, for a given k and hence frequency 0/271, the 
corresponding value(s) of jl for surface waves to exist. In the acoustic case, we have 
k = o/c, where c, is the velocity of sound, whilst in the water wave case, k is the 
real positive root of o2 = gk tanh kh where h is the uniform depth of water, and the 
solutions are more commonly referred to as edge waves. 

Such edge waves are common in classical linear water wave theory but only when 
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the bottom topography is non-uniform. The simplest such solution is that found by 
Stokes (1846) for a uniformly sloping beach. The solution, in the form of a single 
exponential term, was generalized by Ursell (1952) who showed that more and more 
edge wave modes are possible as the beach slope tends to zero. It is known that 
edge waves exist whenever a shallow region is joined to a deeper region offshore and 
Jones (1953) proved that at least one such mode exists in this situation. 

If the depth of the fluid is constant everywhere it is not obvious that edge waves 
can exist. For example the only solution in a region of constant depth bounded by a 
vertical impervious cliff, for waves propagating in the direction of the cliff, is a simple 
plane wave which does not decay in the direction normal to the cliff, and is not an 
edge wave. However, as shown in Part 1, if there exists an infinite set of equally 
spaced identical thin vertical impervious barriers extending outwards in a direction 
normal to the cliff and throughout the water depth, edge waves do exist. 

A special case of these progressing edge waves described in Part 1 is that of 
standing edge waves and, by symmetry, the problem reduces in this case to a thin 
barrier protruding from a vertical wall and mid-way between two parallel vertical 
walls extending out to infinity. Neumann conditions are to be satisfied on the 
barrier and the walls and a Dirichlet condition, corresponding to antisymmetric 
standing waves, is to be satisfied on the extension of the barrier out to infinity. This 
latter condition ensures that a cut-off frequency exists and enables standing edge 
waves or trapped modes to be constructed as described in Evans (1992). Previously 
Evans & Linton (1991) have used the method of matched eigenfunction expansions 
to show numerically that such trapped modes occurred when the barrier was replaced 
by a rectangular block, symmetric about the centreline. 

In the present paper we take advantage of an idea due to Porter (1995) to im- 
prove upon this method and obtain accurate estimates of the relation between 
frequency and dominant long-shore wavenumber for the generalized problem of 
progressing edge waves along a periodic array of rectangular blocks, the results of 
Evans & Linton (1991) being recovered as a special case. 

The problem is formulated in 9 2 where it is shown how the existence of progressing 
edge waves reduces to the problem of whether a certain equation ((2.31) below) has 
a solution where the unknown u(y)  satisfies (2.27). Rather than attempt to solve 
(2.27) exactly a Galerkin approximation is used in which the expansion functions for 
u(y)  are chosen to model the known singularities at the end points of the integral 
corresponding to the corners of the blocks, and also chosen to provide maximum 
simplification of the results. 

The method turns out to be extremely efficient with no more than five expansion 
functions necessary to give three-figure accuracy. 

The results are described in 0 3 where it is shown that for any choice of geometry 
of the blocks, and choice of fundamental wavenumber pd, there exists a value of 
kd and hence wave frequency from which the overall progressing edge wave can be 
constructed. The resulting free-surface elevations are illustrated in a variety of cases, 
showing how in general, except for special values of pd, the motion is aperiodic in a 
direction parallel to the cliff face, whilst decaying to zero out to sea. 

2. Formulation and solution 
Cartesian coordinates are chosen and the dimensions of the blocks are illustrated in 

figure 1. Because they extend throughout the water depth we can write the harmonic 
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RGURE 1. Coastline consisting of a periodic rectangular array. 

velocity potential @ in the from 
@(x, y, z ,  t) = Re { 4(x, y) cosh k ( z  + h)  e-'"'} , (2-1) 

where h is the water depth, o the assumed radian frequency of the edge waves and k 
is the real positive root of 

In the context of acoustics (2.2) is replaced by 
o2 = gk tanh kh. (2.2) 

where c, is the velocity of sound. On the basis of either linear acoustics or water 
waves, we seek a non-trivial $(x, y) satisfying 

(V2 + k2) 4 = 0 (2.4) 

in the fluid, 

on all rigid boundaries, and 

4 + 0, x + m, for all y. (2.6) 

One argument for believing that solutions to these equations exist is as follows. 
Imagine that the inner fluid region x < 0 extends to x = -m and consider a simple 
plane wave exp(ikx) progressing from x = -m in 0 < y < b and, in general, a plane 
wave exp(ikx + irndb) from x = -m in rnd < y < md + b, for all integers m, where 
f l  is at our disposal. These waves will be partially reflected and partially transmitted 
into x > 0 when reaching x = 0, but the assumed form of the incident waves together 
with the periodic geometry requires that the solution everywhere in the fluid region 
must satisfy 

since the only difference observed in moving through a period d in the y-direction is 
in the change of phase of the assumed form of the incident waves in x < 0. 

4(x,y + rnd) = edB4(x,y), m = 0, &I, +2,. . . (2.7) 
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Equation (2.7) is satisfied by 

44% Y )  = eiBYv(x, Y ) ,  (2-8) 

where y(x,y)  is periodic with period d. 
It follows from (2.4) by separation of variables that we may write, in x 2 0 

and the bar denotes complex conjugate. 
Also 

7, = (S," - k2)1'2 > 0 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

provided k < f i  -= 2a/d - k which we shall assume is satisfied. 
It follows that for this new problem it is possible to choose fl  > 0 such that there 

is no radiation into x > 0 and in each region md < y < md + b there must exist a 
reflected wave having a reflection coefficient R satisfying IRI = 1. It is now possible 
to use the argument applied in Evans & Linton (1991) to the simpler problem of a 
rectangular block in a channel. If the extent of the inner fluid region is finite but 
large, an approximate solution is obtained from the solution to this new problem 
by ensuring that the total wave field, incident plus reflected waves, has zero normal 
derivative on the back face of the inner region x = -a. This results in 

R = e-2&a (2.13) 

as an approximation to the condition for edge waves, where R is the reflection 
coefficient defined above. 

Since this new problem described above cannot be solved explicitly, except in the 
case b = 0, k > (Mittra & Lee 1971, p. 50) we shall make no further use of 
(2.13) other than to remark that the above discussion gives added plausibility to the 
existence of progressive edge waves, and also provides us with a starting point for 
their construction. 

Thus it is natural to assume that the form of the solution in x > 0 is indeed given 
by (2.9)-(2.11) with the restriction 

0 < k < B < 2a/d - k. (2.14) 

Thus the edge-wave solution is given by (2.9) once the A,, /3 and k are known. It 
will be shown that a solution can be obtained only for a particular relation between 
B and k which will be derived. Note that the form of (2.9) is complicated, being 
an infinite sum of modes each of which describes an edge wave travelling parallel 
to the cliff face and decaying exponentially out to sea. Thus the nth such mode 
has amplitude proportional to lA,l, wavelength 1, = 2x1 IS + 2na/dJ and travels in a 
direction dictated by the sign of B,. The longest of these modes is that corresponding 
to n = 0, having wavelength 2a/B, and travels in the positive y-direction. 
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Now in the region -a < x < 0,O < y < b we write 

m 

4(x, Y )  = C B;') cash an(x + u ) v ~ ( Y )  
n=O 

where 

satisfies 

31 1 

(2.15) 

(2.16) 

(2.17) 

Here we assume k < n/b so that an > 0, n > 0. This will turn out to be satisfied 
automatically since we will show that it is only necessary to consider /3 < n/d, the 
condition for an edge-wave solution corresponding to = 2 z / d  - /3 being the same 
as for 8. It follows that k < /3 < n/d < n/b and only one mode can propagate into 
x c 0. 

Returning to (2.7) and defining 
m 

+(x, y + md) = C B r )  cash an(x + a)W,(y) (2.18) 
n=O 

we see that (2.7) is satisfied provided 

n (2.19) ~ h m )  = eWdg(0). 

Equation (2.18) provides the extension of 4(x,y) to --a < x < 0, md ,< y < md + b 
ensuring that conditions (2.4), (2.5) are satisfied. It is only necessary therefore to 
consider the interval 0 < y < d and to require 4, q5x continuous on 

Lg : { x = O , O < y < b }  (2.20) 

and 4x = 0 on 
Lb : {X = 0,b < y < d}. 

Now from (2.9) and (2.15) 
(2.21) 

We now multiply (2.22) by Y,(y) and integrate over [0,4 using (2.11), to obtain 

where (2.21) has been used. 
Again, multiplying (2.22) by yrn(y) and integrating over Lg gives 

1 amB:)sinhama = U(y)~,(y) dy = 

(2.23) 

(2.24) 
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co 00 

C A,yY,(y) = C ~ ~ o ) c o s h ~ , a v , ( y ) ,  Y E L, (2.25) 

and substituting for A,, Bio) in (2.25) from (2.23), (2.24), extracting the term involving 
B r )  and defining 

n=-m n=O 

gives 

and 

where 

(2.26) 

(2.27) 

(2.28) 

The problem has been reduced to first solving (2.27) for u(y), for a given set of 
geometric parameters and wavenumber p, and then seeking a relationship between 
and, say, ka, or kb for which (2.28) is satisfied. 

write in the operator form 
We shall adopt a Galerkin approach to the equations (2.27), (2.28) which we first 

x u  = yo (2.30) 
with 

where we define the complex inner product by 
(u, yo) = A = kb tan ka 

(u, u )  = m = u ( y ) O o  dY. J, 
Note that yo is real, and from (2.30), (2.31) A = ( u , X u ) .  

Now from (2.29) 

and it follows that 

Further if u = u 

K(Y7t) = K ( t , y )  

(u, Xu) = ( X u ,  u).  

(2.31) 

(2.32) 

(2.33) 

(2.34) 

provided the infinite series converge. Thus A = (u, yo) = (u, X u )  2 0 also. 
Up until this point the analysis has been exact. Despite the fact that K(y,t) is 

complex, we have shown that for u satisfying (2.27), A = (u,yo) is real and non- 
negative so that the edge waves will exist if we can find solutions of A = kb tan ka. 
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We now show that the value of A for a given /3 in k c 1 c n / d  is identical to that 
obtained for /?’ = 2n/d - B. That is, in an obvious notation 

so that 

First we note that 

(2.36) 

(2.37) 

(2.38) 

Now in the second series in (2.29) we can replace n by -n - 1 without affecting the 
sum. It follows that 

K ( y , t ; P ’ )  = K ( y , t ; B )  (2.39) 
in an obvious notation. 

Thus, A(B’) = (u,wo) where u satisfies 
- 
Xu =yo 

XB = (2.40) 

from (2.39), or 

after taking complex conjugate. 

from (2.40) 

Thus it is only necessary to consider k < f i  < n/d. 

u m U such that 

whence the approximation to A is 

Thus, A(/?’) = (u,yo) = ( ~ 0 , u )  = (y0,B) = (Xij,8) = (8,XD) from (2.34), and finally 

4 B ’ )  = A(B). (2.41) 

Rather than solve (2.27) directly, the Galerkin method seeks an approximation 

( V , . f U )  = (U,wo) (2.42) 

A = (U,wo). (2.43) 

Now 

trivially since A =  yo) = (yo, U) is real. 
so, 

A - A  = ( u , X u )  - ( V , X u )  - ( X u ,  U) + ( U , X U )  
=(u,.xu)-(u,Xu)-(u,Xu)+(u,xu) 
= (u - U , X ( U  - V ) )  2 0 

where (2.34) and (2.42) has been used. 
Thus, 

& A  
and we have a lower bound on the true value of A. 
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N 
u(y)  u = C anun(y) (2.45) 

for some un(y) and unknown a,, substitute into (2.30), multiply by um(y) and integrate 
over L, to obtain 

5 anKmn = Fmo, rn = 0,1,2,. . . 

n=O 
- 

(2.46) 
n=O 

where 

Then 

A = Ca,F,o 

(2.48) 

(2.49) 
n-0 

and it is easily shown that (2.42), (2.43) are equivalent to (2.46), (2.47), using 
(2.45). 

If (2.29) is used in (2.46) we obtain 

where 

(2.50) 

(2.51) 

(2.52) 

Basis functions for  the Galerkin method 
This is dictated by the two 

requirements of correct physical modelling and simplicity of the final forms. Thus 
since u(y)  is proportional to the velocity of the flow in the gap Lg, we might expect that 
sufficiently close to the edges at y = 0, y = b, u(y )  - Cy-'l3(b - y)-ll3 corresponding 
to the flow of an ideal fluid round a corner and derived by a simple conformal 
mapping argument. 

It remains to choose the set of functions u,(y).  

In order to preserve simple forms for F,,, G, and hence K,, we choose 

where 
r(v+m)T(v+n-rn)  

rn!(n-  rn)![r(v)]* ~ C O S  e) = C cos(n - 2rn)O 
m=O 

(2.53) 

(2.54) 
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are the ultraspherical Gegenbauer polynomials satisfying C,V (-x) = (-1)T; (x). See 
for example, Erdklyi et al. (1954, pp. 38 and 94), where the results 

l ( 1  - t2)-1/3Cin/6(t)~~~yt dt = (-l)"Pz,(y), (2.55) 

L 1 ( l  - t2)- ' /3C~~~l(t)sinyt dt = (-1)"Pz,+l(y) (2.56) 

where 
(2.57) 

are given. The idea of using the form (2.53) for Um(y)  was suggested by Porter (1995). 
See also Porter & Evans (1995). We emphasize that the rather curious form of (2.53) 
is chosen solely to both model the physical behaviour of the field near the sharp 
corners and to provide simplification of the final results. See (2.58H2.60). 

After considerable algebra it can be shown that 

and 

(2.58) 

(2.59) 

(2.60) 

Now returning to (2.23), (2.24) and using (2.26), (2.45), (2.51) and (2.52) we can 
express A, and Bio) as 

where 
cot ka 

s=- UO. kb 
Thus from (2.50), (2.59) and (2.60) 

(2.61) 

(2.62) 

(2.63) 

where 
Prm = {(-1y + ( - 1 1 ~ )  {(-Iy + ( - 1 1 ~ 1 .  (2.65) 

Notice that K,,,, is real and, since the same is true for F d  it follows from (2.46) that 
the am (m = 0, 1,2,. . .) are real also. This has been achieved by the choice of constant 
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factors in (2.53). A different choice may have produced a complex K,, but the final 
form for A from (2.49) would, by virtue of (2.35), still have been real. 

The form of the edge wave is now obtained by using (2.61) and (2.9) to give 
m 

+(x,y;~) = C A; ei/%(y--b/2) e-ynx (2.66) 
,=-W 

where 

(2.68) 

where the result 

has been used. 
L I - l ( f l )  = 4 P ’ )  (2.69) 

It follows that 
4bY Y ;  B )  = 4b> Y ;  B’) (2.70) 

so that the solution for a value B’ = 2n/d - k differs from the solution for p only in 
a change of the sign of (y - b/2). 

When 
p = 1’ = n/d, (2.71) 

and 
= A: 

then 
(2.72) 

(2.73) 

where B, = (2n + l)n/d, y, = (fi; - k2)1/2. 
Clearly from (2.73) 4 is a standing wave and, since 4 = 0, y = (b-d/2) and 4y = 0, 

y = b/2, b/2 f d,  we have recovered the antisymmetric trapped waves described by 
Evans & Linton (1991) for a rectangular section of width b placed mid-way between 
the walls of a channel of width d. Note that a similar limiting case was considered in 
Part 1 to recover the solution described in Evans (1992) although equation (2.20) of 
Part 1 contains typographical errors. 

Since there is no forcing in the problem we can rescale the surface profiles arbitrarily. 
For simplicity we choose S = -1 so that the scaled surface elevations can be written 
with time dependence for x 2 0 as 

where Q, is real and is given by 

(2.74) 

(2.75) 
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kd 

1 

0 1 2 3 4 5 

ald 
FIGURE 2. Plots of kd against ald forvarious values of /3d where bld = 0.4. Note that as a/d 

increases the number of roots increases for a fixed j d .  

and for the regions -a < x < 0, md < y < md + b the scaled surface elevation is 
written for m = O,fl,+2,. .. as 

cos k(x + a) 
q(', y -k md, t ,  = cos ka cos(mfid - a t )  

W 

cos (Y) cosh a,(x + a)  

sinh ana 
-2 cos(mfid - at) R,, 

n = l  

cos (Y) cosh a,(x + a) 
sinh ana 

W 

-2 sin(mj?d - at) S,  
fl=l 

where R,, and S,  are real and given by 

and 
N 1 

sn = - a,b (') nn Sin ( y> a, Jm+1/6 (5) . 
m=l,m odd 

(2.76) 

(2.77) 

(2.78) 

3. Results 
In order to determine the relationship between f i  and k for edge waves to exist we 

need first to solve (2.46) for the a,, and then compute a from (2.49). Finally using 
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FIGURE 3. Plots of kd against b l d  for various values of fld where a / d  = 0.5. 

I I I 1 
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FIGURE 4. Plots of kd against fld for various values of a / d  where b l d  = 0.6. 
Pd 
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A = d we must find the roots of the equation (2.31) which will provide the desired 
relation between B and k for a given geometry. The parameters of the problem are 
a / d ,  b / d  relating to the geometry, Bd < 11, the dimensionless wavenumber of the 
fundamental edge mode, and kd(< Bd), related to the frequency w / 2 n  through (2.2).  
All four parameters are contained in the two series defining K,, in (2.50). Note that 
for large r the rth term of each of these series is O(r-7/3)  and this is sufficient for 
K ,  to be computed to any desired accuracy as a function of all four parameters. In 
practice r = 500 was generally sufficient to give at least three-figure accuracy in the 
elements Km,. Convergence of d with increasing N proves to be extremely rapid, with 
A converging to three significant figures for N 2 4.  

Having evaluated d, the approximation to A, it remains to determine numerically 
the solutions of (2.31).  It is not difficult to see that solutions must exist. The 
dependence of a on a / d  occurs through the terms cotha,a in K ,  as given by (2.64). 
It is clear that as a/d increases d rapidly approaches a value independent of a/d, 
given by (2.49) where the a, are obtained by solving (2.46) with the term cotha,a in 
K,, replaced by unity. Now for fixed kd, tanka takes all real values as a / d  varies 
between ( N  - 1/2)11/kd and ( N  + 1/2)11/kd, N an integer, and it follows that for 
fixed b / d ,  Dd, kd there must exist such a value of a / d  for which (2.31) is satisfied. 
Indeed the same argument shows that there is an infinity of values of a/d for each 
set of values of kd, b / d ,  Bd, the difference between successive values approaching 
n / k d  as a / d  increases. This is illustrated by figure 2 which shows how the roots kd 
of (2.31) vary with a/d  for fixed values of b / d  = 0.4 and various Bd. These and 

I 
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I lo-' 
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YJd 

I 1 

1 , 

1 . 1  

subsequent results were obtained by solving the equation A -kb tanka = 0. It can be 
shown that there are at least M(=[Pa/lr], [ 3 denotes integer part of) roots bounded 
by na < ka < (n + 1/2)n, n = 0, 1, ..., M - 1, with the possibility of a further root 
bounded by Mlr < ka < za if &=, 6 zb tan ta where t = min{(M + 1/2)n/a, p} .  

Notice how a particular kd decreases monotonically as a/d increases for fixed Bd, 
b/d, with further roots corresponding to higher-frequency edge-wave modes appearing 
for large values of a/d.  Note also how k 4 p as a/d + 0 for fixed pd, b / d .  Figure 2 
can be compared to the corresponding figure 2 in Part 1 where b/d  = 1. 

The variation of kd with b/d for a fixed value of a/d = 0.5 and various pd is shown 
in figure 3 where it can be seen that the effect of b/d is small except for the larger 
values of pd. It appears that for a given pd there is a value of b / d  for which the 
edge wave has a minimum value of kd. This is more discernible for larger values of 
/?d. There are two limiting cases which can be derived from figure 3. First is the 
case pd = a corresponding to the standing wave solution (2.73) which is equivalent 
to the trapped modes described by Evans & Linton (1991) for a rectangular block 
in a channel. In fact the highest curve in figure 3 corresponding to Pd = a can be 
compared to the lowest curve in figure 4 of Evans & Linton (1991) where allowance is 
made for the different definitions of b /d (=  1 -b/d) and d(= 2d) in the two papers. The 
agreement is good and in the present case no problem was encountered in computing 
the solution as b/d + 0 corresponding to the vanishing of the gaps between successive 
blocks. It is clear from figure 3 that in this case k -, B for all pd. The second limiting 
case corresponds to the case b / d  = 1 when the block reduces to a thin barrier, and 
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1 00 
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10-3 
10-1 1 00 10' 

U d  
FIGURE 7. (a) Surface profile and (b)  spectral plot for the edge wave /Id = 2.5 with 

the calculated wavenumber kd = 1.2008. 

which was considered in Part 1. Thus the end point ( b / d  = 1) of each curve in figure 3 
agrees with the corresponding values for k (with d = 1) for a / d  = 0.5 in Part 1. 

Figure 4 shows how the fundamental edge-wave frequency, through kd and equation 
(2.2), varies with fid for fixed b / d  = 0.6 and various a / d .  Only values of /3d < a are 
presented because the curve is symmetric about n from the argument beginning at 
(2.36). The values increase monotonically with /3d and, regarded as a function of /Id, 
kd appears to have zero gradient at /?d = n, and gradient unity at /?d = 0. 

Figures 5-9 provide different illustrations of the four-parameter set {kd, bd, a / d ,  b / d }  
which defines an edge wave. For each set of values we can construct the free-surface 
elevation throughout the flow field by using equations (2.74) to (2.78). Notice from 
(2.74) that the elevation is not periodic in the y-direction unless fid/2a is of the form 
p / q ,  where p ,  q are integers with 0 < p < q.  In this case the individual edge-wave 
modes have wavelengths 1, = qd/ lp  + nq(,  n = 0, +1, +2,. . ., the combined edge-wave 
having period qd in y. 
In computing the free-surface elevations we first fix the geometry by choosing 

typical values of a / d  = 1, b / d  = 0.6 and h / d  = 1. We then choose different /3d or the 
fundamental wavelength of the edge wave which then enables us to determine kd and 
hence, through (2.2), the corresponding wave frequency or period of the edge waves. 

Equation (2.74) is then used, with x = t = 0, to plot the free-surface elevation at 
the blocks, at time t = 0, as a function of y / d .  For each plot the corresponding 
values of Qn and their wavelengths 1, are plotted showing the relative importance 
of each mode. For all the spectral plots we have only plotted Qn against I , / d  



322 D.  V. Evans and M .  Fernyhough 

10-1 

lo-' 
lo-' 10' 

FIGURE 8. (a)  Surface profile and (b)  spectral plot for the edge wave pd = 3.0 with 
the calculated wavenumber kd = 1.2209. 

for n = -5 , . . . , 5  as the higher modes are in general far smaller. Note that each 
mode is not labelled on the graph but is easily worked out since the 1, are ordered, 

For example figure 5(a) shows the surface profile for pd = 0.5 for which the 
corresponding wavenumber turns out to be kd = 0.4809. The profile is not periodic, 
and is dominated by the fundamental wavenumber Bd which in this case corresponds 
to a wavelength 4nd. The distortion due to higher modes is slight as is clear from 
figure 5(b)  which shows the relative magnitude of Q,. 

The effect of increasing pd to 1.5 is shown in figure 6(a) where the corresponding 
wavenumber is kd = 1.0457. The profile is again not periodic with dominant 
wavelength 4nd/3 but now the effect of the higher modes is evident in the distortion 
of the profile, and is also confirmed by figure 6(b), where now Q-1 is 21% of Qo. 

Further plots for values of pd = 2.5, 3.0 and n in figures 7(a,b), 8(a,b) and 9(a,b) 
respectively show a transition from a formless aperiodic profile (pd = 2.5) to a near 
sinusoidal profile (Bd = z). In figure 8(a) we see that the surface profile is now 
modulated by a larger wavelength or 'beat' frequency. The reason for this can be 
seen in figure 8(b) where the different wavelengths are seen to be close together. For 
pd = 71, we know the edge wave reduces to a standing wave and the profile is shown 
in figure 9(a) where it is seen to be periodic with period 2d and near sinusoidal. The 
extent of the higher modes is shown in figure 9(b)  where the values have merged such 
that Q, = Q-n-l and 1, = L,-I. Finally figure 10(a,b) shows the case of pd = 5n/8 
when the profile is periodic with period 16d. 

10 > 1-1 > 11 > A-2 > . . . > L, > 1,. 
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In these typical examples only the profiles at x = 0 and for t = 0 have been shown. 
As x increases the profiles will change as the amplitudes Qn are each affected by the 
term exp(--y,x) by different amounts, but the overall profile will reduce rapidly to 
zero because of this term. For fixed x and each t a different profile is obtained since 
although the amplitudes Qn remain the same, the phases will vary with varying t .  

4. Conclusion 
It has been shown how edge waves which propagate along a cliff face and decay out 

to sea can occur if there exists a periodic array of rectangular obstacles protruding 
from the cliff face and extending throughout the water depth. The problem is identical 
to the construction of Rayleigh-Bloch surface waves along a rectangular diffraction 
grating in acoustics. 

The method of construction is highly efficient numerically, making use of physically 
relevant expansion functions in a Galerkin approximation to the solution of a certain 
integral equation. Edge waves appear to occur for all geometries in the sense that for 
given values of a/d, b /d  and wave frequency, through kd, there exists a fundamental 
mode of wavelength 2n/4 which forms the basis, through superposition, of an edge 
wave solution. Although periodic in time, only in special circumstances is the overall 
solution periodic in space but since in many cases it appears that the fundamental 
mode dominates, we shall continue to call them edge waves. 

It would appear unlikely that there is anything special about the rectangular 

~GIJRE 9. (a )  Surface profile and (b)  spectral plot for the edge wave bd = H with 
the calculated wavenumber kd = 1.2219. 
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FIGURE 10. (a)  Surface profile and ( b )  spectral plot for the edge wave fld = 5n/8 with the 
calculated wavenumber kd = 1.1434. 

geometry used here and such edge-wave solutions can be expected to occur for 
more general periodic arrays. For the next simplest case of semicircular cylinders 
projecting from the cliff face, in personal communications, both L. Mulholland, using 
a formulation due to Twersky (1962) and C. M. Linton, using a multipole approach, 
have provided numerical evidence of their existence. 

It is possible that the general existence proof provided by by Evans, Levitin & 
Vassiliev (1994) for trapped modes in the vicinity of a body in a channel could be 
adapted to the more general periodic array. 

We are grateful for one reviewer who has pointed out that an axisymmetric version 
of the present problem for electromagnetic surface waves along a corrugated infinite 
wire has been discussed by Jones (1986, pp. 400402). There is little doubt that 
the accurate Galerkin expansions used here could be adapted to provide efficient 
computations of the surface-wave frequencies as a function of the geometry in this 
case also and work on this problem is in hand. 
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